Matematica discreta Esempi

Passaggio 1
Scambia le variabili.
Passaggio 2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.1
Riscrivi l'equazione come .
Passaggio 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 2.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 2.3.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 2.3.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 2.3.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3
Replace with to show the final answer.
Passaggio 4
Verifica se è l'inverso di .
Tocca per altri passaggi...
Passaggio 4.1
Il dominio dell'inverso è l'intervallo della funzione originale e viceversa. Trova il dominio e l'intervallo di e e confrontali.
Passaggio 4.2
Trova l'intervallo di .
Tocca per altri passaggi...
Passaggio 4.2.1
L'intervallo è l'insieme di tutti i valori validi. Usa il grafico per trovare l'intervallo.
Notazione degli intervalli:
Passaggio 4.3
Trova il dominio di .
Tocca per altri passaggi...
Passaggio 4.3.1
Imposta il radicando in in modo che sia maggiore o uguale a per individuare dove l'espressione è definita.
Passaggio 4.3.2
Il dominio è formato da tutti i valori di che rendono definita l'espressione.
Passaggio 4.4
Trova il dominio di .
Tocca per altri passaggi...
Passaggio 4.4.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4.5
Poiché il dominio di è l'intervallo di e l'intervallo di è il dominio di , allora è l'inverso di .
Passaggio 5